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1. Introduction

In this paper we study Dirichlet problem for nonlinear elliptic high-order equations
with coefficients satisfying a strengthened ellipticity condition. A class of nonlinear high-
order equations with such a condition on coefficients and data which are within usual
theory of monotone operators [7] has been introduced in [9], where Holder continuity of
generalized solutions of equations of that class has been established. Unlike [9] equations
under consideration in the present paper have L!-right-hand sides. Their solvability does
not follow directly from results of the theory of monotone operators and on the whole
it is a rather difficult problem.

In this connection we note that a theory of existence and uniqueness of solutions of
Dirichlet problem for nonlinear elliptic second-order equations with L*-data has been
constructed in [1]. First results on solvability of high-order equations with L!-right-
hand sides, namely on solvability of Dirichlet problem for fourth-order equations with
coefficients satisfying a strengthened ellipticity condition, have been obtained in [3]
and (4] with the use of the approach proposed in [1]. However, the realization of that
approach finds in general a series of significant difficulties which are conditioned by
some particularities of high-order equations as compared with the second-order ones.
Overcoming of these difficulties has required to develop additional techniques (see details
in [4]).

Following in general outline the approach of (1] in the present paper we extend some
ideas of [3] and [4] for nonlinear elliptic equations of arbitrary even order greater than
four. In so doing, new moments are connected with the use of some interpolation in-
equalities, such as Nirenberg-Gagliardo inequality [8], and in general with consideration
of the intermediate order derivatives of the functions involved.

2. Initial assumptions

Let m,n € N be numbers such that m > 3, n > 2(m — 1). These inequalities imply
that n(m — 1) — 2 > 0 and

2n(r;rz -2)
n(m—1)-2

2n(m — 2) 2(m —1)
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Let p € R be a number such that

2n(m — 2)

n(m-—l)—2<p<%' (21)

This inequality implies that p(m — 1) — 2(m — 2) > 0.
We set
2p
p(m—1) —2(m —2)"

ﬁ:

By virtue of (2.1) we have max (P, mp) < n.
Let ¢ € R be a number such that

max (B, mp) < q < n. (2:2)

Remark 2.1. If p < 2(m — 1)/m, then p > mp; if p > 2(m — 1)/m, then p < mp.
3. Functional spaces

Let Q be a bounded open set of R™.
We set

. ng
n—gq

q

It is well known (see [6]) that ﬁfl‘q(ﬂ) C L7 (Q) and there exists a positive constant ¢’
depending only on n,q and such that for every u € W9(Q),

(fn Iuiq'd:c)w Leh N (fg iD&u[qd:c)Uq, (3.1)

lex|=1

We denote by W;.%(Q) the set of all functions w € W'9(2) having for every n-
dimensional multiindex a, |a| = m, the weak derivative D%u € L?(2). W,%(Q) is a
Banach space with the norm

1/p
lull = [[ullwreq) + ( Z ./sz | D%u|? dm) ;

|a|=m

We denote by W1,9,(Q) the closure in W.,%,(Q) of the set C§°(22).
We denote by A the set of all n-dimensional multiindices a such that 1 < |a| < m.
For every a € A we set

= [Pl(il:];) i QTm_-i-o;I) ] i '
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LEMMA 3.1. Let h € C*(R), 0 < ¢ < b, and let the following conditions be satisfied:
0<h<binR and |[h| < ch inR. Let u € C§°(R). Then for every n-dimensional
multiindez 5, 2 < [B| < m -1,

1811

(L]Dﬁum(u)dz)é e (ms leaum )dw)m
(Z /1D°= |7h(u )"T'“ = (Z/[D“ 9h(u dz) ',

la|=1 la]=1

where the positive constant ¢’ depends only on m,n, and the positive constant ¢"' de-
pends only on m,n,b and meas Q.

Proving this result we use the inequality ¢ > max (p, mp) and the integration by parts
for the integrals over  of the functions |[DPu|% h(u), 2 < |8] < m — 1. We perform this
integration by analogy with [9] where instead of (2.1) and (2.2) it was supposed only
that p > 2 and mp < g < n.

From Lemma 3.1 we deduce the following result.

LEMMA 3.2. Let u € W19 (Q). Then for every n-dimensional multiindez 3, 2 < |8] <
m—1, there ezists the weak derivative DPu, DPu € L% (Q), and the following inequality

holds
> / |D%u|P dz) (

( f |Dﬁurfﬁdz) < (|a1+m

This inequality is well known Nirenberg-Gagliardo interpolation inequality [8].

AL
¥ f |D%u|? dz) .

lee|=1
With the use of Lemmas 3.1 and 3.2 we establish the following results.

LEMMA 3.3. Let {u;} C ﬁ/}ﬁ‘f},(ﬂ), u € ﬁ’,},;‘fp(ﬂ), and let u; — u weakly in I/%/'Enqp(ﬂ)
Let B be an n-dimensional multiindez such that 1 < || < m — 1, and let g € (1,¢93).
Then DPu; — DPu strongly in L% (0).

LEMMA 3.4. Let h € C*(R), b > 0, and let the following conditions be satisfied: 0 < h <
b in R and |h'| < bh in R. Let for every n-dimensional multiindez 3, 2 < |B| <m -1

we have g e'f(l,qg). Then for every u € V?f},;‘fp{ﬂ) and € € (0,1) we have

/Q{ Z |Dﬁu1€s}h(u)da: QEL{ Z |D%u|9+ Z |D%l”}h(u)d$+(5/s)ﬁ1,

2g€|Bl€m~—1 |a]=1 |a]=m

H

where the positive constant m depends only on m,p,q, {ds : 2 < |B| < m — 1} and the
positive constant ¢ depends only on m,n,b and meas). -
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LEMMA 3.5. Let h € C™(R), h(0) = 0, and let the function h and its derivatives h'",
i = 1,...,m, be bounded in R. Let v € W9 (Q). Then h(u) € W3,9,(Q) and the

following assertions hold:
(i) if |a| =1, then D*h(u) = R (u)D%u a.e. in Q;
(i) if 2 < |a| < m, then

jal
|D%R(u) — 'Y (u) D%u| gc;?m(ZmW(un) > |DPu| ™ a.e. in 0,

1<18I<] e

=2

where the positive constant c;, ., depends only on m and n.

4. Functional set ’;L}nqp(ﬂ)
Let {hi} be a sequence of functions such that for every k € N, hy € C™(R),

hi(s) = s if |s] <k, (4.1)
hi(s) = biksigns if |s| > 2k, (4.2)
Beght g 1) in R, (4.3)
IR < bykt— in R, i=2,...,m, (4.4)

where b; and b, are some absolute positive constants.

We denote by 'r’c"L}nqp(Q) the set of all functions u :  — R such that:

1) for every k € N, hi(u) € ﬁfl‘q L(9);
2) sup ﬁ]{ > IDhe(w)|?+ Y [D%hi(u lp}da:<+oo.
ken k
laj=1 |a|=m
Observe that . .
W,l,;‘fp(ﬂ) G ?—Q,;‘fp(ﬂ).
However, the converse inclusion is not true.

We set
ng-1) . _nlg-1)

=m0

n—1 n—gq

Note that by virtue of (2.2) rp > gq.
Now we state a series of propositions which describe some properties of the set

HLL ().
PROPOSITION 4.1. Let u € ??L},;‘fp[ﬂ). Then for every X € (0,7*), w € L*(Q).

PROPOSITION 4.2 Let u € ?fl},;‘fp(ﬂ) and o € A. Then there exists the weak derivative
D%y and the following assertions hold:
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1) for every X € (1,79a/q), D%*u € L*();
2) for every k € N, D% = D% (u) a.e. in {|u| <k}

PROPOSITION 4.3. Let u € H;,9,(Q). Then

1) for every A € (1,7), u € WIAQ);
2) for every A € (1,7p/q), u€ W™XQ).

In conclusion of this section we remark that the definition of the set H},%,(€2) does not
depend on the choice of a sequence of functions of C™(R) with the properties (4.1)-(4.4).

5. Statement of the problem and definitions of its solutions

We shall use the following notation: R™™ is the space of all functions £ : A — R; if
u € L (©2) and the function u has the weak derivatives D%u,a € A, then Vy,u : Q0 —

loc

R™™ is the mapping such that for every z € Q and a € A, (Vpu(2))a = D%u(z).

Let ¢1,c2,c3 be positive constants, g1,g> be non-negative functions, g1,9» € L'(9),
for every m-dimensional multiindex o, 2 < |a| < m — 1, ¢, be a number such that
Go € (1,90 )- Let for every a € A, Ay : 2 x R™™ — R be a Carathéodory function. We
shall suppose that for almost every ¢ € ( and every £ € R™™,

Y (@O + Y a7+ Y |Aa(e, €))%

la|=1 |laj=m 2€|a|l<m-1

gCl{ D el 30 ke 3 1£al€“}+91(m), (5.1)

[e|=1 |a|=m 2g|a|lgm—-1
S Aaefladal T lalt+ Tl f-a Xl -l (52

al=1,m al|=1 al=m 2&|a|€m—1
=

Let c4 be a positive constant, and let for every n-dimensional multiindex a, 1 < |a| <
m — 1, ro and 7, be numbers such that 1 < 7, < ro < 7qn/q. We shall suppose that
for almost every = € Q and every £,£ € R™™, £ # ¢/,

Y [Aa(z,6)—Aa(z, EN(Ea—bL) > —ca Y (L+|€al+IEL)™ T [€a—E0l™ . (5.3)

a€A 1glaj<m=-1
Let f € L*(2). We shall consider the following Dirichlet problem:

> (-1)°lD%44(2,Vmu) = f in @, (5.4)
acl
D% =0, |la|<m-1, on 0Q. - (5.5)
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DEFINITION 5.1. An entropy solution of problem (5.4), (5.5) is a function u € H1,7,(Q)
satisfying the following condition: there exist ¢ > 0, v > 0 and Ay € (1,79a/q), 1 <
la| < m — 1, such that for every ¢ € C§°(2) and k € N,

fn { Y Aa(z, Vinu)(D%u - Da?,)} B0 — o) do

a€l

g/ﬂfhk(u—cp)d:c+c(l+ Z [}lD“goP“d:c) k7.

1<]algm—1

DEFINITION 5.2. A W-solution of problem (5.4), (5.5) is a function v € W™?(Q)
satisfying the following conditions:

1) for every a € A, Aq(z,Vnu) € LY(Q);

2) for every ¢ € C§°(9),

/Q { ;) Aa(‘cﬁvm“)Daﬁo} dz = /Q fodz.

aElA

A connection between entropy and weak solutions of the problem under consideration
is described by the following result.

THEOREM 5.3. Let
mp(n — 1) + n(m — 1)*

n—-1+(m-1)2

and let §o € (1,794/9), 2 < |a| <m — 1. Let u be an entropy solution of problem (5.4),
(5.5). Then u is a W-solution of problem (5.4), (5.5).

In the next section we shall state results on existence of solutions of the problem
under consideration. The question on uniqueness of an entropy solution of this problem
is resolved positively (under additional conditions on the coefficients 4,). It can be
studied in the same way as an analogous question was investigated in [4]. However, one
cannot expect uniqueness of a W-solution of problem (5.4), (5.5).

6. Existence of solutions
THEOREM 6.1. There ezists a W-solution of problem (5.4), (5.5).

THEOREM 6.2. Let
m(n —1) + n(m —1)?

n—14p(m—1)2

q>

Then there ezists an entropy solution of problem (5.4), (5.5).

Let us consider briefly the scheme of the proof of these theorems.
Let {fi} C L*°(Q) be a sequence such that ||f; — f||z1(q) — 0 and for every I € N,
Ifillza@y < Ifllzi(q). Due to inequalities (5.1)—(5.3), Lemma 3.3 and results of the
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theory of monotone operators (see, for instance Theorem 1.2 of Chapter II in [2]) we
have: if I € N, then there exists u; € W72 (©) such that for every v € W,lnqp(ﬂ),

L{ZAa(z,vmu,)D%}dm =/nf;vd:c. (6.1)

a€A

A significant part in the proof of the above-stated theorems consists in deriving of
some uniform estimates for the functions u;. We establish such estimates with the use
of a sequence of functions of C°°(R) which is introduced below. We only note that
the role of these functions is analogous to that of the standard truncations T} in the
case of second-order equations with L!-data (see [1]). However, in our case, where the
functions T}, cannot be used, particularities of high-order equations dictate the necessity
of presence of some important properties of smooth functions to be used instead of the
truncations T. Just functions which we define below have necessary properties. In the
case of fourth-order equations with L*-data such a kind of functions has been introduced
in [3] and [4].

Let 49 € C*°(R) be a function such that 1o = 0 in (—00,0], %o = 1 in [1, +o0) and
%o is increasing in [0,1]. We define 3 : R — R by

P(s)=1—-(1—e"")Po(s), s€ER.

We fix so € (0,1) such that for every s € (0,50), ¥(s) > 1/2,and for every i € {1,...,m}
and s € (0,s0), |[#(¥(s)| < 1/2. Define

m! = (§) }
=1+ > k] ve.
0 Yo(s0) { — By ol e

Then for every i € {1,...,m} and s € (0,+00) we have [¢(V)(s)| < co%(s).
Define x : (0,+00) = R by

X0 = [ v)d, s €040,

Now for every k € N we define x; : R — R by
s if |s| <k,

xils) = [1+x(|3|k_k)]ksigns if |s|>k.

For every k € N we have x; € C*®(R),

Ixk| < 3k in R, (6.2)
0<x <1 in R, : (6.3)
xO < cok' %Y in R, i=2,...,m. (6.4)
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Due to Lemma 3.5 for every k,l € N we have xi(ui) € W3,9,(R2). Taking arbitrary
k,l € N and putting xx(u;) in (6.1) instead of v with the use of inequalities (5.1), (5.2),
Lemmas 3.1, 3.2, 3.4, 3.5 and properties (6.2)—(6.4) we establish the estimate

/Q { > |D“u:|qﬂ}x$’(ue)dm < csk (6.5)

acl

with a positive constant ¢s which does not depend on k and .
Estimate (6.5) and inequality (3.1) allow us to obtain for every k,! € N the following

estimates: L
meas {|u;| > k} <cgk™ ,

meas {|D%u;| 2 k} < crk~T9/1 ey
where the positive constants c¢ and ¢7 do not depend on k and Il. By virtue of these
esimates we have: for every A € (0,7*), the sequence {u;} is bounded in L*(Q); for

every a € A and A € (0,7¢o/q) the sequence {D%u;} is bounded in L*(£2). Due to the
last fact and (5.1) we obtain that for every @ € A and A € (0, ——f2—) the sequence

? g(ga—1)
{A&(z,Vuy)} is bounded in LA(9).
Using the above-stated properties and some estimate for the measure of the sets

{Z|D“u;—D°‘uj|>t}, bosily

a€A
we establish existence of an increasing sequence {l;} C N and a function u € ?c-’if,;‘{p(ﬂ)
such that:
D%u;, — D%u a.e. in @ and strongly in L*'(Q), |a/<m,
Ao(2,Vimuy,) = Aa(z,Viu) strongly in L' (), a€A.
On the base of the results obtained we prove that the function u is a W-solution of

problem (5.4), (5.5) and, under the condition on g given in the statement of Theorem
6.2, an entropy solution of the same problem.

7. On some generalizations

The above-stated results one can extend in regard to Dirichlet problem for the class
of equations of the form (5.4) with coefficients satisfying for almost every z € Q and
every £ € R™™ the inequalities

5 a@)] =T ()BT <o Y. val@)léal" +ai(2),

1<|al<m 1<lalsm
Y. Az Obazer Y, val@)balP—cs Y va(z)léalP - g2(e)
la|=1,m |a|=1,m 2€|a|<m—1

with given exponents p, and weighted functions v, 1 < |a| < m, positive constants
¢1,¢2,c3 and non-negative functions g1,g> € L*().

This class of equations includes as a particular case equations introduced in [9]. More-
over, this class is a natural extension of the class of degenerate anisotropic fourth-order
equations described in [5].
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